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Two inverse scattering problems

Objective: We propose a generalized inverse Helmholtz scattering prob-
lem and consider its connection to the inverse Liouville scattering problem
in the high-frequency limit.

• Inverse Helmholtz scattering problem: We consider the Helmholtz
equation with a source term Sk(x)

∆uk + k2n(x)uk = Sk(x) , x ∈ Ω ⊂ Rd , (1)

where uk is the wave-field, k is the wave-number and n(x) is the unknown
medium. We aim to reconstruct n(x) by probing the medium with
different Sk(x) and measuring the near-/far-field data.

• Inverse Liouville scattering problem: We consider the Liouville
equation with a delta source in the phase space

v · ∇xf +
1

2
∇xn · ∇v f = δ(x − xs)δ(v − vs) , x ∈ Ω , v ∈ Sd−1 , (2)

where f is the distribution of photon particles. We aim to reconstruct
n(x) by injecting particles at different location xs and velocity vs, and
then measuring the outgoing data.

▶ It is well-known that the Helmholtz equation converges to the Liouville
equation in the high frequency limit (k → ∞) by taking theWigner
transform W k[uk].

▶ The above two inverse problems suggest different stability properties.
The traditional inverse scattering problem is ill-posed, while the inverse
Liouville equation is well-conditioned.

Convergence from the Helmholtz to the Liouville

The generalized inverse Helmholtz problem can be linked to the inverse
Liouville problem by evaluating the convergence of the measurements.
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Figure 1: The real part of uk for k = 29 (left), 210 (middle) and 211 (right).
The blue lines show the Liouville trajectories.
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Figure 2: The Husimi transform Hkuk for k = 29 (left), 210 (middle) and
211 (right). θr denotes the receiver position and θo denotes the receiver
direction. The red crosses denotes the Liouville data.
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Figure 3: The angular-averaged Husimi transform Mk
o (x) for k = 29 (left)

and 211 (right). θi denotes the incident direction. The red lines denotes the
Liouville data.

The generalized inverse Helmholtz scattering problem

When the source and measurement are accordingly adjusted, the new
formulation, called the generalized inverse Helmholtz scattering,
are equivalent to the Liouville problem in the k → ∞ limit:
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Figure 0: An illustration of the inverse scattering problem setup.The
outgoing/incoming boundary Γ± = {(x , v) : x ∈ ∂Ω, ,±ν · x > 0}

▶ Tightly concentrated monochromatic beams are impinged as source

Sk(x) ∝ χ(
√
k(x − xs)) exp (ikvs · (x − xs)) , x ∈ Rd , (3)

where χ(x) is a bump function concentrated near the original.

▶ The wave-field is measured through the Husimi transform

Hkuk(xr, vr) ∝
∣∣uk ∗ ϕk

vr(xr)
∣∣2 , (xr, vr) ∈ Γ+ , (4)

where ϕk
v(x) = χ(

√
kx) exp (−ikv · x)

▶ Stable reconstruction can be achieved in the high-frequency regime

• Theorem 1: As k → ∞, the Wigner transform W k[uk] → f .

• Theorem 2: As k → ∞, the measurement data Hkuk → f .

Inversion Performance

The new inverse scattering formulation coupled with PDE-constrained
optimization seems to be empirically less prone to cycle-skipping.
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Figure 4: Three reconstruction examples. First Row: The ground truth
media n(x) − 1: a bump function (left), a delocalized function (middle)
and the Shepp-Logan phantom (right). Second Row: The reconstructed
media by our new formulation. Third Row: The reconstructed media by
the inverse Helmholtz scattering formulation with chromatic plane wave.
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